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Abstract

The paper provides state-of-the-art information on the following aspects of seismic analysis and design of spread footings supporting

bridge piers: (1) obtaining the dynamic stiffness (‘‘springs’’ and ‘‘dashpots’’) of the foundation; (2) computing the kinematic response; (3)

determining the conditions under which foundation–soil compliance must be incorporated in dynamic structural analysis; (4) assessing

the importance of properly modeling the effect of embedment; (5) elucidating the conditions under which the effect of radiation damping

is significant; (6) comparing the relative importance between kinematic and inertial response. The paper compiles an extensive set of

graphs and tables for stiffness and damping in all modes of vibration (swaying, rocking, torsion), for a variety of soil conditions and

foundation geometries. Simplified expressions for computing kinematic response (both in translation and rotation) are provided. Special

issues such as presence of rock at shallow depths, the contribution of foundation sidewalls, soil inhomogeneity and inelasticity, are also

discussed. The paper concludes with parametric studies on the seismic response of bridge bents on embedded footings in layered soil.

Results are presented (in frequency and time domains) for accelerations and displacements of bridge and footing, while potential errors

from some frequently employed simplifications are illustrated.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

During earthquake shaking, soil deforms under the
influence of the incident seismic waves and ‘‘carries’’
dynamically with it the foundation and the supported
structure. In turn, the induced motion of the superstructure
generates inertial forces which result in dynamic stresses at
the foundation that are transmitted into the supporting
soil. Thus, superstructure-induced deformations develop in
the soil while additional waves emanate from the soil–
foundation interface. In response, foundation and super-
structure undergo further dynamic displacements, which
generate further inertial forces and so on.

The above phenomena occur simultaneously. However,
it is convenient (both conceptually and computationally) to
e front matter r 2006 Elsevier Ltd. All rights reserved.
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separate them into two successive phenomena referred
to as ‘‘kinematic interaction’’ and ‘‘inertial interaction’’
[1–4], and obtain the response of the soil–foundation–
structure system as a superposition of these two interaction
effects:
(a) ‘‘Kinematic interaction’’ (KI) refers to the effects of

the incident seismic waves to the system shown in Fig. 1b,
which consists essentially of the foundation and the
supporting soil, with the mass of the superstructure set
equal to zero (in contrast to the complete system of
Fig. 1a). The main consequence of KI is that it leads to a
‘‘foundation input motion’’ (FIM) which is different
(usually smaller) than the motion of the free-field soil
and, in addition, contains a rotational component. As will
be shown later on, this difference could be significant for
embedded foundations.
(b) ‘‘Inertial interaction’’ (II) refers to the response of

the complete soil–foundation–structure system to the
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Nomenclature

ak(t) kinematic acceleration
A soil surface-to-rock motion amplification

function
Ab foundation basemat–soil contact area
Aw total area of actual sidewall–soil contact

surface
Awce sum of projections of total sidewall area in

direction perpendicular to loading
Aws sum of projections of total sidewall area in

direction parallel to loading
b soil inhomogeneity parameter
B foundation halfwidth or ‘‘equivalent’’ radius

in the direction examined, or of circum-
scribed rectangle

C, Cz, Cy, Cij dashpot coefficient
Crad radiation damping coefficient
d total height of actual sidewall–soil contact

surface
dc diameter of bridge pier
D depth of embedment
Es soil modulus of elasticity
Ec concrete modulus of elasticity
f frequency
fc fundamental natural frequency of soil de-

posit in compression–extension
fD natural frequency in shear mode of a

hypothetical soil stratum of thickness D

fs fundamental natural frequency of soil de-
posit in shear mode

F(UA) Fourier amplitude spectrum of design mo-
tion at free-field soil surface

FS factor of safety
g acceleration of gravity
G, G0 soil shear modulus, maximum (low-strain)

soil shear modulus
G0, GN soil shear modulus at zero and infinite depth,

respectively
h distance of (effective) sidewall centroid from

ground surface
H soil thickness
Hc height of bridge pier
He horizontal force amplitude due to inertia on

the masses of the superstructure
i O�1
I1 mass moment of inertia of bridge super-

structure
Ib polar moment of inertia about z of soil

foundation contact surface
Ibx moment of inertia about x of soil foundation

contact surface
Iby moment of inertia about y of soil foundation

contact surface
IF rotational kinematic interaction factors
I0 mass moment of inertia of bridge foundation

IR impedance contrast between soil and rock
IU translational kinematic interaction factors
k wavenumber
K static stiffness
K̄ , K̄z dynamic stiffness (‘‘spring’’)
k, k(o) dynamic stiffness coefficient
K̄ sur, Csur dynamic stiffness and dashpot coefficients of

surface foundation
Kemb, Cemb dynamic stiffnesses and dashpot coefficients

of embedded foundation
Kx swaying foundation impedance
Ky swaying impedance in long direction
Krx rocking impedance about long axis of

foundation basemat
Kry rocking impedance about short axis of

foundation basemat
Kt torsional impedance about vertical axis
Kx�ry, Ky�rx cross-coupling horizontal-rocking impe-

dances
Kstr dynamic structural impedance of superstruc-

ture
L semi-length of footing (or of circumscribed

rectangle)
m1, ms superstructure mass
Me overturning moment amplitude due to in-

ertia on the masses of the superstructure
m0, mb foundation mass
n soil inhomogeneity parameter
P axial gravity load carried by bridge system
PGA peak ground acceleration
Pz, Pz(t) vertical force
q, qu applied foundation pressure
R radius of bridge footing
SA spectral acceleration
Su soil undrained shear strength
t time
T, ~T period, effective period
uz(t), u1, u2 vertical foundation displacement
UA, UG motions at depths A and G, respectively
Va apparent wave propagation velocity along

ground surface or soil–foundation interface
VLa, VLao ‘‘Lysmer’s analog’’ wave velocity, ‘‘Lysmer’s

analog’’ wave velocity at surface
Vr shear wave velocity of rock
VR Rayleigh wave velocity
Vs, Vso soil shear wave velocity, soil shear wave

velocity at surface
z depth
zr depth of influence
zv, zh, zr, zt depths of influence in vertical, horizontal,

rocking, and torsional vibrations

Greek letters

a, f phase angle (a also Ramber-Osgood para-
meter)
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b, bij linear hysteretic damping factors
g soil unit weight
gc cyclic shear strain amplitude in percent
gy characteristic shear strain
lR Rayleigh wave length
n Poisson’s ratio
x, ~x damping, effective damping of soil-structure

system
X0 inhomogeneity parameter
rr elastic rock mass density

rs soil mass density
sz vertical normal stress
t, tc soil shear stress
F free-field rotation
F0 foundation rotation
FG rotation about out-of-plane horizontal axis

through foundation center
c angle of incidence of S wave along the

horizontal axis
o cyclic frequency

Fig. 1. (a) The geometry of soil–structure interaction problem; (b) decomposition into kinematic and inertial response; (c) two-step analysis of inertial

interaction (modified after Kausel et al. [5]).
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excitation by D’Alembert forces associated with the
acceleration of the superstructure due to the KI (Fig. 1b).

Furthermore, for a surface or embedded foundation, II
analysis is also conveniently performed in two steps, as
shown in Fig. 1c: first compute the foundation dynamic
impedance (‘‘springs’’ and ‘‘dashpots’’) associated with
each mode of vibration, and then determine the seismic
response of the structure and foundation supported on
these springs and dashpots, and subjected to the kinematic
accelerations ak(t) of the base. The following section
presents methods and results for each of these steps.

2. Assessing the effects of kinematic interaction

The first step of the KI analysis is to determine the free-
field response of the site, that is, the spatial and temporal
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Fig. 2. Selection of ‘‘control’’ point where seismic excitation is specified.

Fig. 3. Definition of points A and G in the free field with reference to

kinematic response of a massless foundation (from [8]).
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variation of the ground motion before building the
structure. This task requires that:

(a) The design motion be known at a specific (‘‘control’’)
point, which is usually taken at the ground surface or at the
rock-outcrop surface, as shown in Fig. 2. Most frequently
the design motion is given in the form of a design response

spectrum in the horizontal direction and sometimes also in
the vertical direction.

(b) The type of seismic waves that produce the above
motion at the ‘‘control’’ point may be either estimated
from a site-specific seismological study based on available
data, or simply assumed in an engineering manner. In most
cases the assumption is that the horizontal component of
motion is due solely to either vertically propagating shear
(S) waves or vertical dilatational (P) waves. In critical
projects other wave patterns (e.g., oblique body waves,
surface waves) may have to be considered.

Having established (a) and (b), wave-propagation
analyses are performed to estimate the free-field motion
along the soil–foundation interface. The equivalent linear
computer code SHAKE [6] is a well established tool for
performing such analyses, and can be used for any possible
location of the control point (at the ground surface, at the
rock outcrop surface, or the base of the soil deposit). Other
codes, performing truly nonlinear response analyses
(DESRA, DYNAFLOW, CHARSOIL, STEALTH, AN-
DRES, WAVES, etc.) require that the base motion be first
estimated and used as input. In these techniques, the
‘‘control’’ point should be at the base of the profile.

2.1. Simplified site response analysis

For the case of SH or SV harmonic waves propagating
vertically through the soil with frequency o, the variation
of motion with depth in the free field of a horizontally
stratified deposit will be given by one-dimensional ampli-
fication theory. For a homogeneous soil layer, the
amplitude of the motion at any depth z, UG, relates to
the motion at the ground surface, UA, as follows [1,7]:

A �
UG

UA
¼ cosðkzÞ, (1)

where k ¼ a complex ‘‘wavenumber’’ in view of the
presence of material damping in the soil given by

k ¼
o

V s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ib

p , (2)

where o is the excitation frequency, Vs the propagation
velocity of shear waves in the soil, i ¼ O�1, b the linear
hysteretic damping coefficent of soil material.
If material damping is ignored, function A simplifies to

A ¼ cosðoz=V sÞ. (3)

For any bearing specific depth z ¼ D (see also Fig. 3),
this transfer function becomes zero whenever o ¼
ð2nþ 1Þðp=2ÞðV s=DÞ, which are the natural frequencies in
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Fig. 4. Inclined SH wave, apparent wave length ðla ¼ ls= sincÞ, free-field surface motion (UA), and foundation effective input motion (UG,FG).
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shear vibrations of a stratum of thickness D. This implies
that these frequencies would be entirely filtered out from
the seismic motion at the foundation depth D.

Since the transfer function in Eq. (1) is equal to or
less than 1 over the whole frequency range, the motion
will always be de-amplified with depth. This is no
longer true if internal damping exists in the soil, but for
moderate values of damping the transfer function will
still show some important variations with frequency and
the motion at the depth D will still be less than at the
surface.

It is also possible in the free field to define a rotation
function (Fig. 3):

F ¼
UA �UG

D
, (4)

which pertains to a perfectly flexible embedded foundation
subjected to a vertically propagating seismic wavefield. In
more ridid foundations, the rotation would tend to be less
than the above estimate. Accordingly, F can be treated as
an upper-bound of the actual foundation rotation. Also,
for a surface foundation subjected to a traveling seismic
wave, points A and G should be taken at the same
elevation. The rocking and torsional response of the
foundation induced by such an excitation will be influenced
by the destructive interference of the incoming waves—the
so-called ‘‘tau effect’’ of Newmark [9]. Only the former case
is discussed in this work.

For a homogeneous stratum with zero internal damping,
the rotation in Eq. (4) becomes

F ¼
UA

D
1� cos

oD

V s

� �� �
¼ 2

UA

D
sin2

oD

V s

� �
. (5)
2.2. Simplified kinematic interaction analysis: foundation

input motion

The displacement and rocking rotation in Eqs. (1) and
(5) refer to depth D in the free field and constitute the
driving motion for the kinematic response of the founda-
tion. The presence of a more-or-less rigid embedded
foundation diffracts the 1-D seismic waves, since its rigid
body motion is generally incompatible with the free-field
motion. The wave field now becomes much more compli-
cated and the resulting motion of the foundation differs
from the free-field motion, and includes a translational and
a rotational component. Since, according to Fig. 1, this
foundation motion is used as excitation in the II step of the
whole seismic response analysis, it is termed FIM.
The following simple expressions (based on results by

Luco [10], Elsabee et al. [11], Tassoulas [12], Harada et al.
[13], Wolf [14]) can be used for estimating the translational
and rocking components of FIM in some characteristic
cases. Specifically:
(a) For a surface foundation subjected to vertically

propagating S waves:

UG � UA, (6)

FG � 0, (7)

where FG is the rocking component of the motion. Eqs. (6)
and (7) imply that there is no kinematic effect, and that the
FIM includes only a translation equal to the free-field
ground surface motion.
(b) For a surface foundation subjected to oblique S or

surface (Rayleigh or Love) waves, one must first deter-
mine the apparent propagation velocity Va along the
horizontal x axis (Fig. 4). Calling c the angle of incidence



ARTICLE IN PRESS
G. Mylonakis et al. / Soil Dynamics and Earthquake Engineering 26 (2006) 824–853 829
of an S wave:

V a ¼
V s

sinc
. (8)

Different choices for the value of c can be made and the
one leading to the largest structural response should be
selected.

For surface waves, Va will be determined from the
dispersion relation of the soil deposit for each particular
frequency o. For Rayleigh waves in a practically homo-
geneous and deep soil deposit, Va turns out to be only
slightly less than Vs [15]. In this case, of course, Eq. (8) is
inapplicable. For a deposit consisting of multiple layers
of total thickness H having an average S-wave velocity
V s ð¼ H=SHi=ViÞ and underlain by a halfspace (‘‘rock’’)
of shear wave velocity Vr, Va varies between Vs (lower limit
at high frequencies) and 0:9� V r (upper limit at low
frequencies) as follows [16,17,63]:

V a ¼

0:90V r; fpf H ;

V s; fX2f H ;

0:90V r � ð0:90V r � V sÞ

�ðf =f H � 1Þ; f Hofp2f H ;

8>>>><
>>>>:

(9a2c)

where f H ¼ V s=4H is the fundamental natural frequency
of the deposit.

Finally, for a deposit with stiffness increasing continu-
ously with depth, Va is only slightly less than the S-wave
velocity Vs (zc) at a depth [16,18]

zc �
1
3
lR, (10a)

where lR ¼ VR=f is the wave length of the Rayleigh wave.
Apart from the above theoretical considerations, numer-

ous indirect measurements of the apparent phase wave
velocity of body waves along the ground surface have been
reported in the literature (e.g., [17]). A key conclusion from
these measurements is that the apparent velocity, even in
soft soils (characterized by S-wave velocity of the order of
150m/s), attains values in excess of

V a ¼ 1500 m=s: (10b)

This is an indirect evidence of the dominance of near-
vertical S waves. Seismic codes for bridges (e.g. EC8/Part2-
Bridges) have began to recognize these high values of phase
velocity.

Note that the above equations have been derived for
free-field conditions; their applicability to footings has not
been rigorously tested. Gazetas [16] first studied the
problem of equivalent depth for some profiles. Vrettos
[18] derived the exact solution for exponential variation of
soil modulus with depth, for a wide range of frequencies
and soil profile parameters. Another interesting work on
equivalent depth for SH-surface waves is given in Ref. [19].
For this type of wave, the equivalent depth is approxi-
mately 0.2 l.

Once the apparent velocity Va along the horizontal
x-axis is estimated, the components of FIM can be
determined from the following relations (based on the
works of Luco and Westman [20], Elsabee et al. [8],
Tassoulas [21], and Harada et al. [22]):
�
 Horizontal translation:

UG ¼ UA � IU ðoÞ (11a)

IU ðoÞ ¼
sinðoB=V aÞ

oB=V a
;

oB

Va
p

p
2
, (11b)

¼
2

p
;

oB

V a
4

p
2
. (11c)
�
 Rocking rotation:

FG ¼
UA

B
� IFðoÞ, (12a)

where

IF ¼ 0:30 1� cos
oB

Va

� �� �
;

oB

Va
p

p
2
, (12b)

¼ 0:30;
oB

V a
4

p
2
, (12c)

in which B is the foundation halfwidth or ‘‘equivalent’’
radius in the direction examined; o the cyclic frequency
of harmonic seismic waves; FG denotes the rocking
rotation about the out-of-plane horizontal axis through
the foundation center.

(c) For a foundation embedded at depth D and subjected
to vertical and oblique SH waves, the horizontal and
rotational component of FIM are approximately [8,20–22]:

UG ¼ UA � IU ðoÞ, (13a)

IU ðoÞ ¼ cos
p
2

f

f D

� �
; fp

2

3
f D, (13b)

¼ 0:50; fX
2

3
f D, (13c)

FG ¼
UA

B
� IFðoÞ, (14a)

IFðoÞ ¼ 0:20 1� cos
p
2

f

f D

� �� �
; fpf D, (14b)

¼ 0:20; fXf D, (14c)

in which f ¼ o=2p is the frequency in Hz of the harmonic
seismic wave; f D ¼ V s=4D the frequency in shearing
oscillations of a hypothetical soil stratum of thickness D.
As a first approximation, Eqs. (13)–(17) apply to all
foundation geometries.
Note that the rotation is an integral and important part

of the base motion of the massless foundation. Ignoring it,
while de-amplifying the translational component through
the transfer function IU(o), may lead to errors on the
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Fig. 5. Physical interpretation of dynamic spring and dashpot in vertical mode of vibration.
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unsafe side. These errors are perhaps negligible for
determining the response of short squatty structures—
especially very heavy ones, but may be substantial (of the
order of 50% or more) for tall slender structures [23]. On
the other hand, ignoring both the de-amplification of the
horizontal component ðIU ¼ 1Þ and the existence of the
rotational component ðIF ¼ 1Þ usually leads to slightly
conservative results; this is a simplification frequently
followed in practice for noncritical structures [24].

2.3. Use of KI transfer functions

Eqs. (6)–(14) are transfer functions relating the free-
field horizontal ground surface motion to the effective
FIM in the frequency domain. The mathematically correct
(but still approximate) way of using the functions is as
follows:
�
 obtain the Fourier amplitude spectrum F(UA) of the
design motion at the free-field ground surface,

�
 multiply F(UA) by IU(o) and by IF(o)/B to obtain the

Fourier amplitude spectra functions (UG and FG) of the
components of the FIM,

�
 use these functions directly as excitation in the II

analysis, if the latter is done,

�
 in the frequency domain, or obtain, through an inverse

Fourier transformation, the corresponding time his-
tories to be used as excitation in a time domain inertial
response analysis.
In practice, the most frequently used method involves a
further simplification. It makes use of response spectra
rather than Fourier spectra, and is, therefore, particularly
attractive whenever the design motion is specified in the
form of a design spectrum, SA(o) or PSA(o), at the
ground surface, which is the most usual case in design
codes. The response spectrum of the effective horizontal

FIM is approximated as the product of SAðoÞ � IU ðoÞ for
the acceleration to be applied at the foundation mass, and
as the product SAðoÞ � ½IU ðoÞ þ IFðoÞHc=B� for the
acceleration to be applied at a structural mass located a
vertical distance Hc from the base [25].

3. Inertial SSI: assessment of foundation ‘‘springs’’ and

‘‘dashpots’’

As explained in Section 1, the first step in II analysis is to
determine the foundation impedance corresponding to
each mode of vibration. For the usual case of a rigid
foundation, there are six modes of vibration: three
translational (dynamic displacements along the axes x, y

and z) and three rotational (dynamic rotations around the
same axes).
For each mode, soil can be replaced for the dynamic

analysis by a dynamic spring of stiffness K̄ and by a
dashpot of modulus C. Their values will be discussed
later on. Fig. 5 illustrates the vertical spring and dash-
pot (K̄z and Cz) of an embedded foundation. Subjected
to harmonic vertical force PzðtÞ ¼ Pz cosðotþ aÞ with
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amplitude Pz and frequency o, this foundation experiences
a harmonic steady-state displacement uz(t) which has the
same frequency o but is out-of-phase with Pz(t). Thus, uz(t)
can be expressed in the following equivalent ways:

uzðtÞ ¼ uz cosðotþ aþ fÞ

¼ u1 cosðotþ aÞ þ u2 sinðotþ aÞ, ð15Þ

where the amplitude uz and phase angle f are related to the
in-phase, u1 and the 901-out-of-phase, u2, components
according to

uz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
1 þ u2

2

q
, (16a)

tanf ¼
u2

u1
. (16b)

We can rewrite the foregoing expressions in an equivalent
and computationally beneficial way using complex nota-
tion:

PzðtÞ ¼ P̄z expðiotÞ, (17a)

uzðtÞ ¼ ūz expðiotÞ, (17b)

where now P̄z and ūz are complex quantities

P̄z ¼ Pz1 þ iPz2, (18a)

ūz ¼ uz1 þ iuz2. (18b)

Eqs. (17) and (18) are equivalent to Eqs. (15) and (16) with
the following relations being valid for the amplitudes:

Pz ¼ jP̄zj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

z1 þ P2
z2

q
, (19a)

uz ¼ jūzj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

z1 þ u2
z2

q
, (19b)

while the two phase angles, a and f, are included in the
complex forms.

With Pz and uz being out of phase or, alternatively, with
P̄z and ūz being complex numbers, the dynamic vertical
impedance (force–displacement ratio) becomes:

Kz ¼
P̄z

ūz

¼ K̄z þ ioCz, (20)

in which both K̄z and Cz are, in general, functions of
frequency. The spring constant K̄z, termed dynamic

stiffness, reflects the stiffness and inertia of the supporting
soil; its dependence on frequency relates solely to the
influence that frequency exerts on inertia, since soil
material properties are to a good approximation frequency
independent. The dashpot coefficient Cz reflects the two
types of damping (radiation and material) generated in the
system; the former due to energy carried by the waves
spreading away from the foundation, and the latter due to
energy dissipated in the soil through hysteretic action. As
evident from Eq. (20), damping is responsible for the phase
difference between the excitation Pz and the response uz.

The definition in Eq. (20) is also applicable to each of the
other five modes of vibration. Thus, we define as lateral
(swaying) impedance Ky the ratio of the horizontal
harmonic force over the resulting harmonic displacement
ūyðtÞ in the same direction:

Ky ¼
P̄y

ūy

¼ K̄y þ ioCy. (21)

Similarly,
�
 Ky ¼ the longitudinal (swaying) impedance (force–dis-
placement ratio), for horizontal motion in the long
direction,

�
 Krx ¼ the rocking impedance (moment–rotation ratio),

for rotational motion about the long axis of the
foundation basemat,

�
 Kry ¼ the rocking impedance (moment–rotation ratio),

for rotational motion about the short axis of the
foundation,

�
 Kt ¼ the torsional impedance (moment–rotation ratio),

for rotational oscillation about the vertical axis.

Moreover, in embedded foundations and piles, horizon-
tal forces along principal axes induce rotational in addition
to translational oscillations; hence, a cross-coupling hor-
izontal-rocking impedance also exists: Kx�ry and Ky�rx.
The coupling impedances are usually negligibly small in
shallow foundations, but their effects may become
appreciable for greater depths of embedment, owing to
the moments about the base axes produced by horizontal
soil reactions against the sidewalls.

3.1. Example: lateral seismic response of block foundation

supporting a SDOF structure

We refer to Fig. 6 for an example on how to use the
foundation ‘‘springs’’ and ‘‘dashpots’’ to determine the
response of a complete structure to harmonic earthquake-
type excitation. The foundation and structure possess two
orthogonal axes of symmetry, x and y, and coupled
horizontal (swaying) and rotational (rocking) oscillations
take place. Of interest are the foundation horizontal
displacement U0 exp(iot) along the x-axis, foundation
rotation F0 exp(iot) about the y-axis, and relative displace-
ment of the structure U1 exp(iot). The seismic excitation is
given by the free-field surface displacement UA exp(iot) of
amplitude UA and frequency o.
As a first step, we determine the FIM, from the KI

analysis. Using the information presented earlier,

UG ¼ UAIU ðoÞ and FG ¼ UAIU ðoÞ=B,

where IU and IF are the appropriate KI factors for each
frequency o.
The governing D’Alembert equations for dynamic

equilibrium of the foundation block and the structure are
[26]:

KxðU0 �UGÞ þKx�ryðF0 � FGÞ

¼ o2½m0U0 þm1ðU0 þHcF0 þU1Þ�, ð22aÞ
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Fig. 6. Seismic displacements and rotation of a foundation block

supporting a SDOF super-structure. The seismic excitation is described

through the free-field ground-surface displacement UA, assumed to be

produced by a certain type of body or surface waves.
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Kx�ryðU0 �UGÞ þKryðF0 � FGÞ

¼ o2½I0F0 þ I1F0 þm1HcðU0 þHF0 þU1Þ�, ð22bÞ

�m1o2ðU0 þHcF0 þU1Þ þKstrU1 ¼ 0, (22c)

in which m0 and I0 are the mass and mass moment of
inertia of the foundation, m1 and I1 are the mass and mass
moment of inertia of the superstructure and Kstr ¼ K str þ

ioCstr the structural impedance (stiffness and damping) of
the superstructure. Note thatKx�ry is of minor importance
in surface foundations, and is usually ommitted.1 In
embedded foundations, however, the term should be
included, as it may have a profound influence in the
response [27].
1This holds when the reference system is placed atop the footing ðz ¼ 0Þ,

as is usually the case.
The above equations define a simple algebraic system of
three equations in three unknowns, despite the fact that the
quantities involved are complex numbers. The solution, in
matrix form, for the foundation motion is

U0

F0

( )
¼

K

K � o2ðM0 �MbÞ

UG

FG

( )
, (23a)

where

K ¼
KxKx�ry

Kry�xKry

" #
, (23b)

½M0� ¼
m0 0

0 I0

" #
, (23c)

½Mb� ¼ ½M� þm1

1 Hc

Hc H2
c

" #
, (23d)

½M� ¼
m1 m1Hc

m1Hc m1H
2
c þ I1

" #
(23e)

for the superstructure:

U1 ¼
m1o2

K str þ ioCstr �m1o2
ðU0 þHcF0Þ. (24)

Eqs. (23) and (24) provide the solution in closed form. The
computations, however, may be somewhat tedious if
performed by hand, since K matrix involves complex
numbers. On the other hand, it is noted that if a real-
number notation (with amplitudes and phase angles) had
been adopted (as in Eq. (15)), Eqs. (23) would become six
equations with six unknowns—a less desirable procedure.
A simple computer code could readily perform the
operations in Eqs. (23) and (24).

3.2. Computing dynamic impedances: tables and charts for

dynamic ‘‘springs’’ and ‘‘dashpots’’

The most important geometric and material factors
affecting the dynamic impedance of a foundation are:
(1)
 the foundation shape (circular, strip, rectangular,
arbitrary),
(2)
 the type of soil profile (deep uniform or multi-layer
deposit, shallow stratum on rock),
(3)
 the embedment (surface foundation, embedded foun-
dation, pile foundation).
For a project of critical significance a case-specific
analysis must be performed, using the most suitable
numerical computer program. In most practical cases,
however, foundation impedances can be estimated from
approximate expressions and charts. For the usual case of a
practically rigid foundation, a number of analytical
formulae and charts for such stiffnesses have been
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Fig. 7. The four foundation–soil systems whose impedances are given in tabular/graphical form. Numbers I–IV refer to corresponding tables and the

associated graphs.
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published (e.g., [24,28–35]) and are presented in this
section.

3.3. Surface foundation on homogeneous halfspace

For an arbitrarily-shaped foundation mat, the engineer
must first determine an ‘‘equivalent’’ circumscribed rectangle
2B by 2L (L4B) using common sense, as sketched in Fig. 7.
Then, to compute the impedances in the six modes of
vibration from Table 1a, all that is needed is:
�
 Ab, Ibx, Iby, Ib are area, moments of inertia about x, y,
and polar moment of inertia about z, of the actual soil
foundation contact surface; if loss of contact under part
of the foundation (e.g. along the edges of a rocking
foundation) is likely, engineering judgment may be used
to discount the contribution of this part.

�
 B and L are semi-width and semi length of the

circumscribed rectangle.

�
 G, n, Vs and VLa, the shear modulus, Poisson’s ratio,

shear wave velocity, and ‘‘Lysmer’s analog’’ wave
velocity; the latter is the apparent propagation velocity
of compression–extension waves under a foundation
and is related to Vs according to

VLa ¼
3:4

pð1� nÞ
V s. (25)

Additional discussion on the Lysmer analog velocity can
be found in Ref. [33].

�
 o ¼ cyclic frequency (in rad/s) of interest.

This table as well as all other tables in this paper gives:

�
 the dynamic stiffness (‘‘springs’’), K̄ ¼ K̄ðoÞ as a

product of the static stiffness, K, times the dynamic
stiffness coefficient k ¼ kðoÞ:

K̄ðoÞ ¼ K � kðoÞ, (26)
�
 the radiation damping (‘‘dashpot’’) coefficient
C ¼ CðoÞ. These coefficients do not include the soil
hysteretic damping, b. To incorporate such damping,
one should simply add to the foregoing C value the
corresponding material dashpot coefficient 2K̄b=o:

total C ¼ radiation C þ
2K̄b
o

. (27)

The special cases of footings of rectangular and elliptic
shape are addressed in Table 1b.
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Table 1b

Stiffness for foundations of rectangular and elliptical shape on homogeneous halfspace surface

y

x

2L

2B

2a

2b
x

y

Response mode Static stiffness K

Rectangle (B=L ¼ 2) Rectangle (B=L ¼ 4) Ellipse (a=b ¼ 2) Ellipse (a=b ¼ 4)

Vertical, z Kz ¼
3:3GL

1� n
2:55GL

1� n
2:9Ga

1� n
1:8Ga

1� n

Horizontal, y (lateral direction) Ky ¼
6:8GL

2� n
5:54GL

2� n
6:5Ga

2� n
5:3Ga

2� n

Horizontal, x (longitudinal direction) Kx ¼
4:9ð1� 1:4nÞ
ð2� nÞð0:75� nÞ

GL
3:9ð1� 1:4nÞ
ð2� nÞð0:75� nÞ

GL
4:7ð1� 1:37nÞ
ð2� nÞð0:75� nÞ

Ga
3:7ð1� 1:4nÞ
ð2� nÞð0:75� nÞ

Ga

Rocking, rx (around x axis) Krx ¼
0:82GL3

1� n
0:2GL3

1� n
0:55Ga3

1� n
0:78Ga3

1� n

Rocking, ry (around y axis) Kry ¼
2:46GL3

1� n
1:62GL3

1� n
1:65Ga3

1� n
1:1Ga3

1� n
Torsional K t ¼ 3:5GL3 2.1GL3 2.35Ga3 1.4Ga3
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3.4. Partially and fully embedded foundations
For a foundation embedded in a deep and relatively
homogeneous soil deposit that can be modeled as a
homogeneous halfspace, springs and dashpots are obtained
from the formulae and charts of Table 2a (modified from
Gazetas [36]). The foundation basemat can again be of
arbitrary (solid) shape (Fig. 7). The engineer must
determine the following additional parameters using
the table:
�
 D is the depth below the ground surface of the
foundation basemat.

�
 Aw or d is the total area of the actual sidewall–soil

contact surface, or the (average) height of the sidewall
that is in good contact with the surrounding soil. Aw

should, in general, be smaller that the nominal area of
contact to account for such phenomena as slippage and
separation that may occur near the ground surface. The
engineer should refer to published results of large and
small-scale experiments for a guidance in selecting a
suitable value for Aw or d (e.g., [37–40]). Note that Aw or
d will not necessarily attain a single value for all modes
of vibration.

�
 Aws and Awce which refer to horizontal oscillations and

represent the sum of the projections of all the sidewall
area in directions parallel (Aws) and perpendicular (Awce)
to loading. Again Aws and Awce should be smaller than
the nominal areas in shearing and compression, to
account for slippage and/or separation. h is the distance
of the (effective) sidewall centroid from the ground
surface.

�
 Note that most of the formulae of Table 2a are valid for

symmetric and nonsymmetric contact along the peri-
meter of the vertical sidewalls and the surrounding soil.
Note also that Table 2a compares the dynamic
stiffnesses and dashpot coefficients of an embedded
foundation K̄emb ¼ K̄emb � kemb and Cemb with those of
the corresponding surface foundation, K̄ sur ¼ K̄ sur �

ksur and Csur.

Approximate solutions for the special cases of footings
of rectangular and elliptic shapes are given in Table 2b.

3.5. Presence of bedrock at shallow depth

Natural soil deposits are frequently underlain by very
stiff material or bedrock at a shallow depth, rather than
extending to practically infinite depth as the homogenous
halfspace implies. The proximity of such stiff formation to
the oscillating surface modifies the static stiffness, K, and
dashpot coefficients C(o). Specifically, with reference to
Table 3 and its charts:

(a) The static stiffnesses in all modes decrease with the
relative depth to bedrock H/B. This is evident from all
formulae of Table 3, which reduce to the corresponding
halfspace stiffnesses when H/R approaches infinity.
Particularly sensitive to variations in the depth to rock
are the vertical stiffnesses—the effect being far more
pronounced with strip footings (factor 3.5 versus 1.3).
Horizontal stiffnesses are also appreciably affected. On the
other hand, for H/R41.5 the response to torsional loads is
essentially independent of the layer thickness.
As indication of the causes of this different behavior

(between circular and strip footings and, in any footing,
between the different types of loading) can be obtained by
comparing the depths of the ‘‘zone of influence’’ in each
case. Circular and square foundations on a homogeneous
halfspace induce vertical normal stresses sz along the
centerline of the footing that become practically negligible
at depths exceeding 5 footing radii ðzv ¼ 5RÞ; with strip
foundations vertical stresses practically vanish only below
15 footing widths ðzv ¼ 15BÞ. The depth of influence, zh, for
the horizontal stresses tzx, due to lateral loading is about
2R and 6B for circle and strip, respectively. On the other
hand, for all foundation shapes (strip, rectangle, circle),
moment loading is ‘‘felt’’ down to a depth, zr, of about 2B

or 2R. For torsion, finally zt ¼ 0:75R or 0.75B.
Apparently when a rigid formation extends into the

‘‘zone of influence’’ of a particular loading mode, it
eliminates the corresponding deformations and thereby
increases the stiffness.
(b) The variation of the dynamic stiffness coefficients with

frequency reveals an equally strong dependence on the depth
to bedrock H/B. On a stratum, k(o) is not a smooth
function but exhibits undulations (peaks and valleys)
associated with the natural frequencies (in shearing and
compression–extension) of the stratum. In other words, the
observed fluctuations are the outcome of resonance
phenomena: waves emanating from the oscillating founda-
tion reflect at the soil–bedrock interface and return back to
their source at the surface. As a result, the amplitude of the
foundation motion may significantly increase at frequencies
near the natural frequencies of the deposit. Thus, the
dynamic stiffness (being the inverse of displacements)
exhibits troughs, which can be very steep when the hysteretic
damping of the soil is small (in fact, in certain cases, k(o)
would be exactly zero if the soil was ideally elastic).
For the ‘‘shearing’’ modes of vibration (swaying and

torsion) the natural fundamental frequency of the stratum
which controls the behavior of k(o) is

f s ¼
V s

4H
, (28)

where H denotes the thickness of the layer, while for the
‘‘compressing’’ modes (vertical, rocking) the corresponding
frequency is

f c ¼
V La

4H
¼

3:4

pð1� nÞ
f s. (29)

(c) The variation of the dashpot coefficient, C, with
frequency reveals a twofold effect on the presence of a rigid
base at relatively shallow depth. First, C(o) also exhibits
undulations (crests and troughs) due to the wave reflections
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at the rigid boundary. These fluctuations are more
pronounced with strip than with circular foundations,
but are not as significant as for the corresponding stiffness
k(o). Second, and far more important from a practical
viewpoint, is that at low frequencies below the first
resonant (‘‘cutoff’’) frequency of each mode of vibration,
radiation damping is zero or negligible for all shapes of
footings and all modes of vibration. This is due to the
fact that no surface waves can exist in a soil stratum
over bedrock at such low frequencies; and, since the
bedrock also prevents waves from propagating downward,
the overall radiation of wave energy from the footing is
negligible or nonexistent.
Such an elimination of radiation damping may have

severe consequences for heavy foundations oscillating
vertically or horizontally, which would have experienced
substantial amounts of damping in a very deep deposit
(halfspace)—recall illustrative examples for Tables 1a and
2a. On the other hand, since the low-frequency values of C

in rocking and torsion are small even in a halfspace,
operating below the cutoff frequencies may not change
appreciably from the presence of bedrock.
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Table 2b

Stiffness for foundations of rectangular and elliptical shape embedded in homogeneous halfspace

Response mode Static stiffness K

Rectangle ðB=L ¼ 2Þ Rectangle ðB=L ¼ 4Þ Ellipse ða=b ¼ 2Þ Ellipse ða=b ¼ 4Þ

Vertical, z Kz;emb ¼ Kz;surf � wz

wz ¼ 1þ 0:16 D
L

� �
� 1þ 0:42 d

L

� �2=3h i
1þ 0:25D

L

� �
� 1þ 0:6 d

L

� �2=3h i
1þ 0:14 D

a

� �
� 1þ 0:42 d

a

� �2=3h i
1þ 0:24 D

a

� �
� 1þ 0:6 d

a

� �2=3h i
Horizontal, y Ky;emb ¼ Ky;surf � wy

(lateral direction) wy ¼ 1þ 0:2
ffiffiffi
D
L

q
 �
� 1þ d

L

� �0:8h i
1þ 0:3

ffiffiffi
D
L

q
 �
� 1þ 1:3 d

L

� �0:8h i
1þ 0:2

ffiffiffi
D
a

q
 �
� 1þ d

a

� �0:8h i
1þ 0:3

ffiffiffi
D
a

q
 �
� 1þ 1:2 d

a

� �0:8h i
Rocking, rx Krx;emb ¼ Krx;surf � wrx
(around x axis) wrx ¼ 1þ 2:5 d

L
1þ 1:4 d

L
d
D

� ��0:2h i
1þ 5 d

L
� 1þ 2 d

L
d
D

� ��0:2h i
1þ 2:5 d

a
� 1þ 1:4 d

a
d
D

� ��0:2h i
1þ 5 d

a
� 1þ 2 d

a
d
D

� ��0:2h i
Rocking, ry Kry;emb ¼ Kry;surf � wry
(around y axis) wry ¼ 1þ 2:1 d

L

� �0:6
1þ d

D

� �1:9h i
1þ 3:2 d

L

� �0:6
� 1þ 1:5 d

D

� �1:9h i
1þ 2 d

a

� �0:6
� 1þ d

D

� �1:9h i
1þ 3:2 d

a

� �0:6
� 1þ 1:5 d

D

� �1:9h i
Torsional K t;emb ¼ K t;surf � wt

wt ¼ 1þ 3:7 d
L

� �0:9
1þ 6:1 d

L

� �0:9
1þ 4 d

a

� �0:9
1þ 6 d

a

� �0:9
Note: K�;surf obtained from Table 1b.
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Note that at operating frequencies f beyond fs or fc, as
appropriate for each mode, the ‘‘stratum’’ damping
fluctuates about the halfspace damping C ðH=B ¼ 1Þ.
The ‘‘amplitude’’ of such fluctuations tends to decrease
with increasing H/B. Moreover, if some wave energy
penetrates into bedrock (as it does happen in real life
thanks to some weathering of the upper masses of rock) the
fluctuations tend to wither away—hence the recommenda-
tion of Table 3.
3.6. Foundations on soil stratum over halfspace

The homogeneous halfspace and the stratum-on-rigid-
base are two idealizations of extreme soil profiles. A more
realistic soil model, the stratum over halfspace, is studied in
this subsection. Besides the H/R or H/B ratio, the ratio
Gs/Gr (or the wave velocity ration Vs/Vr) is needed to
describe such a soil model. When Gs/Gr tends to zero the
stratum-on-rigid base (‘‘bedrock’’) is recovered; when it
becomes equal to 1, the model reduces to a homogeneous
halfspace. For intermediate situations of 0oGs/Gro1,
springs and dashpots can be estimated using the informa-
tion of this paragraph.

Table 4 presents formulas for the static stiffness of
circular and strip foundations, in terms of Gs/Gr and H/R
(for the circle) or H/B (for the strip). These formulas are
valid for GspGr, i.e., a halfspace stiffer than the layer. At
the lower limit, Gs/Gr-0, the expressions reduce to those
of Table 3 for a layer on rigid base. At the upper limit, Gs/
Gr-1, the halfspace expressions (Table 1) are recovered.
At intermediate values, as the rigidity of the supporting
halfspace decreases, the static stiffnesses of the foundation
decrease, apparently due to increasing magnitude of strains
in the halfspace. The results are intuitively obvious and
need no further explanation.
The dynamic stiffness and damping coefficients as
functions of frequency also exhibit intermediate behavior
between those for halfspace and for stratum over bedrock.
Thus the observed undulations are not as sharp as the
undulations on a stratum over bedrock, depending, of
course, on the value of Gs/Gr.
In general, compared to a stratum over bedrock, the

flexibility of the base layer (halfspace) produces a decrease

in stiffness but an increase in radiation damping. The latter
stems from the fact that waves emitted from the
foundation–soil interface penetrate into the halfspace,
rather than being fully reflected.
For the earthquake problem, this increase in radiation

damping is practically most significant for the swaying
dashpot at frequencies o ¼ 2pf below the fundamental
frequency of the top soil stratum. Recall that at such
frequencies, when the halfspace is a rigid bedrock, no
radiation damping can generate, and hence resonance
amplifications in the seismic response may develop. In this
case this is no longer true. Fig. 8 gives a chart for
estimating the swaying dashpot Cy for several values of the
ratio Vs/Vr. This chart applies to circular or square
foundations with H/RE3–4 and for strip foundations with
H=B ¼ 2. The chart can only be used as a guide in other
cases.
On the other hand, rotational modes of vibration

generate little damping below their respective cutoff
frequencies, and the significance of rock flexibility is of
minor practical significance. This is also true for higher
frequencies, since ‘‘destructive’’ interference of waves
emitted from a rotating (in rocking or torsion) foundation
limits the depth these waves can reach. Hence the flexibility
or rigidity of the base layer is, again, of practically little
significance.
Additional information on this topic can be found in

[24,28,41,42].
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Table 4

Static stiffness of circular and strip foundations on soil stratum over

halfspace

Vibration mode General expression

K ¼ KðGs=Gr;H=BÞ ¼ Kð1;1Þ � 1þmðB=HÞ
1þmðB=HÞðGs=GrÞ

K(1,N) m

Circle Strip

Vertical K 1.3 3.5

Horizontal of homogenous halfspace 0.5 2.0

Torsional 0.17 0.2

G. Mylonakis et al. / Soil Dynamics and Earthquake Engineering 26 (2006) 824–853842
3.7. Effect of soil heterogeneity

The assumption of homogeneous or layered halfspace
may not be realistic in practice, as the soil gets progressively
stiffer with depth, even in uniform deposits. The prime cause
is the increase in confining pressure with depth and the
associated increase in low-strain shear modulus. Soil
inhomogeneity can be easily treated in dynamic finite-
element formulations by dividing the soil into a number of
homogeneous layers. Yet, such formulations have not been
adequately exploited to study parametrically the dynamic
behavior of foundations [43]. On the other hand, there is an
inherent difficulty in applying analytical and semi-analytical
methods to dynamics of inhomogeneous media, because of
the difficulties associated with decoupling of the governing
equations and solving of the related differential equations
with variable coefficients. As a result, the number of
solutions available today is limited [32,33,44–47].
In this paper information is provided on three specific

cases for which solutions are available:
�
 A rectangular footing with side lengths 2L and 2B

(L4B) resting on an elastic deposit with shear modulus
increasing with depth as

G ¼ G0 þ ðG1 � G0Þð1� e�bðz=BÞÞ, (30)

where G0 and GN denote the shear moduli at the surface
and at infinite depth, respectively, and b is a dimension-
less inhomogeneity constant. The problem has been
analysed by Vrettos [33] for the case of vertical and
rocking oscillations.

�
 A circular footing of radius R oscillating vertically on

elastic soil with shear modulus increasing proportionally
to the square of depth, and Poisson’s ratio n equal to
0.25 [32]

G ¼ G0 1þ b
z

R


 �2
. (31)

b is a dimensionless inhomogeneity parameter which can
be determined by fitting pertinent experimental results
or field data. The corresponding problem of a strip
footing has been solved by Gazetas [46] and is not
discussed here. This model can simulate deposits with a
fast increase in elastic modulus. Usually, however, the
quadratic G-variation in Eq. (31) is of minor importance
for practical applications.
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Fig. 8. Horizontal radiation dashpot Cy of a foundation on a soil layer underlain by ‘‘flexible’’ rock, as a fraction of the homogeneous halfspace value

Cy (1,N), for various ratios VS/Vr (after Dobry and Gazetas [39]).

Table 5

Static stiffness for rigid rectangular foundations (after Vrettos [33])

X0 n b L/B Kz/G0 B Kry/G0 B3 Krx/G0 B3

0 0.3 1 6.373 5.370 5.370

2 9.326 9.610 27.044

4 14.277 13.992 144.047

0 0.2 1 5.576 4.699 4.699

0.45 8.111 6.835 6.835

0.5 0.3 0.5 1 9.188 6.508 6.508

2 14.113 11.842 35.174

4 22.556 22.422 201.029

0.5 0.3 1 1 10.115 7.180 7.180

1.5 10.636 7.653 7.653

0.5 0.2 0.5 1 7.908 5.630 5.630

1 8.694 6.183 6.183

0.5 0.45 0.5 1 12.154 8.507 8.507

1 13.420 9.486 9.486

0.7 0.3 0.25 1 10.469 6.824 6.824

0.5 12.314 7.812 7.812

1 14.458 9.246 9.246

0.9 0.3 0.1 1 13.092 7.600 7.600
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�

Table 6

Values of G/Gmax for soil beneath foundations (from NEHRP-2003 and

EC8)

Spectral response acceleration, SA

p0.10 p0.15 0.20 X0.30

G/Gmax 0.81 0.64 0.49 0.42

The fact that soil stiffness does not appear as variable in this table [e.g., at

least through a soil category] reduces dramatically its usefulness.
A circular footing or radius R oscillating vertically on
elastic soil with shear modulus increasing according to
the function [24]

G ¼ G0 1þ b
z

R


 �n

, (32)

where n and b are dimensionless parameters.

With reference to the profile in Eq. (30), Table 5 presents
results for static stiffnesses in the vertical and rocking
modes for different values of the soil Poisson’s ratio. In the
table, X0 denotes the dimensionless parameter

X0 ¼ 1�
G0

G1
, (33)

which is bounded by zero and one. Selected results for
dynamic stiffness and dashpots coefficients are presented in
Fig. 9. The dimensionless frequency factor indicated in the
graph is expressed in terms of the shear wave velocity at the
surface (Vso) (Table 6).

For the footing on the profile described by Eq. (31),
dynamic stiffness and dashpot coefficients are depicted in
Fig. 10. Corresponding static stiffnesses are provided in the
paper by Guzina and Pak [32] and in [48]. It is noted that
material damping in the soil has been ignored in all the
above studies and, thereby, the derived dashpot coefficients
pertain only to wave radiation.

The following noteworthy trends can be identified in
these figures:

1. The variation with frequency of dynamic stiffness is
smaller in a heterogeneous soil than in a homogeneous soil.
k z
z
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1.0
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 = ω  B / Vso
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k r
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Ξ
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 = 0.9, b = 0.1

Ξ
o
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Ξ
o
 = 0.7, b = 0.1

Ξ
o
 = 0.7, b = 1

Fig. 9. Normalized dynamic stiffness and dashpot coefficients for vertical an

different values of b and X0 (modified from [33]).
In addition, the dynamic stiffness coefficient k generally
decreases with increasing levels of inhomogeneity. The
differences, however, are of secondary importance from a
practical point of view.
2. Radiation damping decreases substantially with

increasing inhomogeneity in the soil. The effect is more
pronounced at low frequencies. This decrease is understood
given the limited ability of an inhomogeneous medium to
radiate waves away from the source [24,45]. At high
frequencies the discrepancies in damping between an
inhomogeneous and a homogeneous medium become
smaller. This can be explained considering that high
frequency (small wavelength) waves emitted from the
foundation ‘‘see’’ the medium as a homogeneous halfspace
having wave velocity equal to the surface velocity Vso (in
shearing) or VLao (in compression–extension). This prop-
erty has been utilized in the development of ‘‘cone’’ models
for related problems [14,49].
c z
z

0.0

0.5

1.0

a0
 = ω  B / Vso

0.0 0.5 1.0 1.5 2.0

c r
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 c
rx
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d rocking motion of a square foundation on a nonhomogeneous soil for
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Fig. 11. Effect of inhomogeneity on normalized damping for vertical (upper left

vertical motion of circular footing based on Guzina and Pak [32] and Gazeta

Fig. 10. Dynamic spring and dashpot coefficient for a rigid circular

footing on a linear wave-velocity halfspace (modified from [32]).
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3. A cutoff frequency is apparent in the results for the
circular footing in Fig. 10. As pointed out by Guzina and
Pak [32], this may not be totally surprising, since the profile
can be regarded as a limiting case of a multi-layered
medium in which wave reflections can occur at the
‘‘interfaces’’ in the vertical direction. An interesting
discussion on the issue of cutoff frequency is given in [50].
To develop further insight on the effect of inhomogene-

ity in radiation damping, Fig. 11 depicts radiation damping
expressed in terms of the ratio

bijðoÞ ¼
oCijðoÞ
2K̄ ijðoÞ

. (34)

The above ratio is referred to as ‘‘damping performance
index’’ and is analogous to the critical damping ratio in the
theory of the single-degree-of-freedom oscillator. In Fig.
11, the dramatic decrease in radiation damping resulting
from soil inhomogeneity becomes clearly evident.

3.8. Effect of soil nonlinearity

In current soil–structure interaction (SSI) practice,
nonlinear plastic soil behavior is usually approximated
through a series of iterative linear analyses, using soil
properties (moduli and damping ratios) that are consistent
with the level of shearing strains resulting from the
previous analysis [5,52]. These analyses may utilize a
wealth of available experimental soil data relating the
decrease in (secant) shear modulus and the increase in
) and rocking motion (lower left) of a square footing based on Vrettos [33];

s [51].
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Fig. 12. Bridge system studied.
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(effective) damping ratio with increasing amplitude of
shear strain.

Nonlinearities in the free-field soil are treated routinely
with programs such as SHAKE [6,53]. Much less work has
been reported on nonlinearities on the dynamic impedance
functions of footings. In one of the few available studies
(e.g., [54–56]), Borja [54] reports that soil nonlinearity
resulting from an external harmonic load tends to increase
the foundation motion and generate low-frequency reso-
nances even in a homogeneous halfspace. Another inter-
esting study has been conducted by Jakub and Roesset [57].
In this, the soil is modeled as homogeneous or inhomoge-
neous stratum over rigid base with H=B ¼ 1, 2, and 4. A
Ramber-Osgood model was used to simulate the nonlinear
constitutive relations of soil and iterative linear analyses
were performed. One of the two parameters of the Ramber-
Osgood model, r, was kept constant equal to 2, while the
second one, a, was varied so as to cover a wide range of
typical soil stress–strain relations. In this model, the
variation of secant modulus and effective damping ratio
with stress amplitude is given by

G

G0
¼

1

1þ aðt=G0gyÞ
, (35a)

b ¼
2

3p
G

G0

t
G0gy

, (35b)

in which G0 is the initial shear modulus for low levels of
strain; gy a characteristic shear strain, typically ranging
from 0.0001% to 0.01%; and t the amplitude of the
induced shear stress.

It was concluded that a reasonable approximation to the
swaying and rocking impedances of a rigid strip may be
obtained from the available linear viscoelastic solutions,
provided that the ‘‘effective’’ values of G and b are
estimated from Eqs. (35) with

t ¼ tc, (36)

where tc is the statically induced shear stress at a depth
equal to 0.50 B, immediately below the foundation edge.
Note that the above depth coincides with the depth of
maximum shear strain under a vertically loaded strip
footing [58].

For design purposes and as a first approximation, we
mention here that the average shear modulus for the
soil beneath a footing can be determined according
the NEHRP-2003 recommendations, as a function of the
design seismic coefficient of the structure (Table 4).
Alternatively, one may use approximate cone models to
derive strain-compatible moduli [14].

4. Parametric study of the seismic response of bridge pier

To answer some of the questions raised earlier, a
systematic parametric study was conducted on an idealized
bridge model. One of features of the study relates to the
unavoidable soil nonlinearities during strong seismic
excitation. Such nonlinearities are of two types: ‘‘primary’’,
arising from the shear-wave induced deformations in the
free-field soil; and ‘‘secondary’’ arising from the stresses
induced by the oscillating foundation. Whereas established
methods of analysis are available for handling the former
type of nonlinearities (through equivalent linear or truly
nonlinear algorithms), no simple realistic solution is known
for the latter. The approach described above is adopted
here and different soil moduli are used for the analysis of
wave-propagation and for the computation of the dynamic
stiffnesses, consistent with the overall level of strains at
characteristic points under the footing. A discussion of
the aforementioned decoupling of nonlinearity is given in
Ref. [5].
The bridge pier sketched in Fig. 12 is a slightly idealized

version of an actual bridge. It involves a single column bent
of height Hc ¼ 6 m and diameter dc ¼ 1:3 m, founded with
a 5-m-diameter ðR ¼ 2:5 mÞ footing placed at a depth D ¼

3 m below the ground surface. The axial load carried by the
system, P ¼ 3500 kN, is typical of a two-lane highway
bridge with a span of about 35m. Considering a shear wave
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velocity and a mass density for the top layer of 80m/s and
2Mg/m3, respectively, and using the approximate relation
G/SuE500, the undrained shear strength of the top layer is
estimated at about 50 kPa. Accordingly, the static factor of
safety of the footing is about:

FS �
qu

q
¼

1:3� 5:14� 50þ 3� 20

3500=ðp� 2:52Þ
� 2, (37)

which is a sufficient, although marginal, value for a bridge
footing.

The contact area between sidewalls and surrounding soil
was considered to be either zero (no sidewall–soil contact)
or partial sidewall-soil contact over a height d ¼ 0:5D from
the base.

Results were obtained for excitation by vertical S waves,
described through a horizontal ‘‘rock’’outcrop motion.
Both harmonic steady-state and time-history analyses were
performed, in the frequency and time domains, respec-
tively. The former were applied to investigate the salient
features (SSI period, effective damping) of the dynamic
behavior of the system; the latter were performed to obtain
Fig. 13. Artificial 0.4g motion and corresponding response spectra for 5%

and 10% damping.
predictions of the response to actual motions. In the time-
domain analyses, two different excitation time histories
were used, both having a peak horizontal acceleration
(PGA) of about 0.40g:
(a)
Fig.

5%
an artificial accelerogram approximately fitted to the
NEHRP-94 PGA ¼ 0:4g,
(b)
 the Pacoima downstream motion, recorded (on ‘‘soft
rock’’ outcrop) during the Northridge 1994 earthquake
(since the PGA is 0.42g, scaling of this motion was not
considered necessary).
The two motions and their five and ten percent damped
spectra are shown in Figs. 13 and 14. Use of these motions,
as ‘‘rock’’ outcrop excitations, is deemed necessary for
checking the limitations (or showing the generality) of our
conclusions. The same set of motions has been used by the
authors in an earlier study of pile-supported bridge piers
[27,59].
The results presented in this section refer to a bridge with

a top (deck) free to rotate, subjected to the Pacoima 1994
14. Pacoima (1994) motion and corresponding response spectra for

and 10% damping.
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motion, and rigid rock conditions. A second set of
parametric results, which incorporate more general bound-
ary conditions, are presented later on.

The harmonic steady state and transient seismic response
of this pier, obtained in a complete analysis, is displayed
in Figs. 15 and 16. These results should be compared
with those in Figs. 17–20, which examine the following
cases:
(a)
 no SSI, i.e. the footing is considered as rigidly
supported (Fig. 18)
(b)
 embedment having partial sidewall contact ðd ¼ 1:5 mÞ
with the surrounding soil (Figs. 17 and 19)
(c)
 no radiation damping, i.e. setting for all modes of
vibration Crad ¼ 0 (Fig. 20)
The following conclusions can be drawn:
1. Ignoring SSI reduces the fundamental natural period

of the system (from 0.83 to 0.53 s), bringing it closer to
resonance with the second-mode natural period of the soil
deposit (0.48 s). In addition, the effect of the soil radiation
and hysteretic damping on the bridge response disappear.
Fig. 15. Complete solution: harmoni
Naturally, therefore, the resulting no-SSI bridge transfer
functions exhibit a (spurious) sharp and high peak at
T ¼ 0:53 s.
Moreover, the rock outcrop excitations are richer in the

period region of 0.50 s than of 0.80 s, which accentuates the
peak at T ¼ 0:53 s.
As a result, the no-SSI time histories of bridge-deck and

footing accelerations are (Fig. 18), both, nearly two times

larger than those of the complete solution (with SSI).
Also of interest is to notice the change in the nature of
the bridge-deck response time histories: the (largest)
peak in the complete solution, at tE4 s, is in unison with
the long-period ground (free field) oscillations occurring
after about 3 s—apparently produced by resonance at
the fundamental period of the soil deposit. The early

part of the free-field ground motion, with much shorter
periods, is a product of ‘‘secondary’’ resonance between
the strong short-period early part of the Pacoima–
Northridge excitation and the second natural mode
of the soil deposit. However, the effect of this part of the
ground motion on the bridge is obviously completely
insignificant.
c steady-state transfer functions.
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Fig. 16. Complete solution: acceleration histories for Pacoima, North-

ridge (1994) rock motion.

Fig. 17. Solution for improved embedment: acceleration histories for

Pacoima, Northridge (1994) rock motion.
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The no-SSI response shows exactly the opposite trends,
with its (largest) peak occurring at tE2.5 s, in phase with
the strong ground motion observed at that time.

It should be pointed out that the foregoing trends should
not be generalized to any bridge-footing system. For
example, had the frequency of the earthquake excitation
been different (or, alternatively the thickness of the soil
profile been smaller or larger), the above trends could be
reversed.

3. Neglecting radiation damping in this case has a minor
effect both in the frequency and time domains. Two are the
reasons: (a) While the fundamental period of the pier
considering SSI (TE0.83 s) is below the fundamental
period of the whole deposit (TE1.15 s), the main cutoff
period (above which there is little or no radiation damping)
is the second natural period corresponding to the
resonance of the first (crucial) soft soil layer. Thus,
radiation damping in the complete solution is small and
neglecting it is of little significance at resonance. (b) In
addition, the excitation is not particularly rich in 0.80-s-
period components, so even the small decrease in overall
damping is of no further consequence. Additional discus-
sion can be found in Refs. [7,60–62].
5. Conclusions

The main conclusions of this study are:
1. The decomposition of SSI into a kinematic (KI) and

an inertial (II) part provides a convenient way to analyze
the problem. To account for the unavoidable nonlinearities
in the soil during strong seismic excitation, it is reasonable
(though not strictly correct) to separate soil nonlinearity
into ‘‘primary’’, arising from the shear-wave induced
deformations in the free-field soil, and ‘‘secondary’’, arising
from the stresses induced by the oscillating foundation
(which is concentrated close to the surface). Although both
phenomena occur simultaneously, in the realm of equiva-
lent linear analyses performed using kinematic and inertial
response analyses, different soil moduli can be used in the
two steps.
2. KI leads to a foundation input motion (FIM) which is

usually smaller than the motion of the free-field soil and, in
addition, to a rotational component. Ignoring the rota-
tional excitation may lead to errors on the unsafe side.
These errors are small when determining the response of
short squatty structures but may be large for tall slender
structures. On the other hand, neglecting KI altogether
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Fig. 18. Solution ignoring SSI: acceleration histories for Pacoima,

Northridge (1994) rock motion.

Fig. 19. Solution for improved embedment: harmonic steady-state

transfer function.
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usually leads to slight conservative results. It is therefore
recommended for design of noncritical bridges.

3. In embedded foundations and piles, horizontal forces
induce rotational, in addition to translational, oscillations,
hence a ‘‘cross-coupling’’ horizontal-rocking impedance
exists. Ignoring the coupling stiffness may lead to under-
estimation of the fundamental period of a flexibly-
supported pier. On the other hand, coupling impedances
are usually small in shallow foundations and can be
ignored.

4. The contact between the sidewalls of an embedded
footing and the surrounding soil tends to increase both the
stiffness (spring constant) and damping (dashpot constant)
of the footing. The actual sidewall area that is in ‘‘good’’
contact with the surrounding soil is usually smaller than
the nominal contact area. The actual contact area does not
necessarily attain a single value for all modes of vibration.

5. If bedrock is present at a shallow depth beneath a
footing, the static stiffness in all modes of vibration
increases. Particularly sensitive to the presence of bedrock
is the vertical mode. Horizontal stiffnesses may also be
appreciably affected. The torsional and rocking stiffnesses
remain essentially unaffected.
6. The variation of dynamic stiffness coefficients is also
sensitive to the presence of bedrock. The amplitude of the
foundation motion may increase significantly at frequen-
cies near the natural frequency of the deposit. Radiation
damping is insignificant at frequencies below the ‘‘cutoff’’
frequency of the layer. As with their static counterparts,
torsional and rocking damping impedances are not
particularly sensitive to the presence of bedrock.
7. The dynamic impedances of footings on a soil stratum

overlying a stiffer halfspace exhibit intermediate behavior
between those for homogeneous halfspace and for a
stratum over bedrock. The flexibility of the halfspace leads
to a decrease in stiffness but an increase in radiation
damping. The latter stems from the fact that waves emitted
from the foundation–soil interface penetrate into the
halfspace rather than being fully reflected. For the earth-
quake problem, the increase in radiation damping is most
significant in the swaying dashpot, at frequencies below the
‘‘cutoff’’ frequency of the stratum.
8. It appears difficult to determine á priori whether SSI

will increase or decrease the response of a bridge. In the
realm of equivalent linear analyses this seems to be
controlled by the following main parameters: (a) The
system damping: if the fundamental period of the flexibly-
supported bridge is significantly smaller than the ‘‘cutoff’’
frequency of the soil (e.g., a rigid pier on a deep and soft
deposit), radiation damping will be significant and the
response of the system will decrease. In particular, if the
cutoff period of the soil is very large (e.g., a thick deposit),
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Fig. 20. Solution neglecting radiation damping: harmonic steady-state transfer functions.
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radiation damping may be substantial regardless of natural
period of the system. This implies that modeling the soil as
a halfspace, as done in existing seismic regulations (ATC-3,
NEHRP-2003), may lead to unconservative estimates of the
response. (b) Resonance between structure and soil. If the
increase in fundamental natural period due to SSI brings
the period of the bridge close to an ‘‘effective’’ natural
period (especially the first or second) of the soil, resonance
will develop which will tend to increase the response.
However, if the frequency content of the excitation is not
rich in that particular period, the increase may be
insignificant. (c) Double resonance. If the fundamental
natural period of the system coincides with both the natural
period of the soil and the predominant period of the
earthquake motion (at rock level), double resonance will
develop (i.e., between structure, soil, and excitation). In
this case the response may increase dramatically. Whether
or not this will result to damage is related to several
additional parameters that are not discussed in this study.
(d) Nonlinear effects. The development of plastic deforma-
tions in the structure and soil, including development of
pore water pressure and uplift, may increase the effective
natural period of the structure and the soil. This shift
in period may lead to either de-resonance or resonance
(e.g., bringing the structure closer to the predominant
period of the excitation), which, in turn, may lead to
‘‘progressive collapse’’. To date, such strong nonlinearities
are beyond the state of the art of seismic SSI.
The conclusions drawn from the parameter studies

should not be generalized to bridge piers, soil deposits
and seismic excitations with characteristics very different
from those of the studied cases. However, the observed
phenomena and the discussed interplay between various
natural periods of the system and dominant periods of the
ground excitation, can be of help in predicting qualitatively
the response in other cases, or in interpreting the results of
numerical studies.
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